15NT54 USN

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 **Digital System Design**

Max. Marks: 80 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

	Module-1						
he	working of 2	2:1	multiplexer	with truth	table	and	logic
			_				

What is Multiplexer? Explain the 1 a. (08 Marks) diagram. What is Full adder? Design a binary Full adder with a truth table. Write the Boolean

b. (08 Marks) expression for output.

OR

Write a verilog code for AND gate using data flow, behavioural flow and structural flow 2 (06 Marks) methods.

With the help of diagram and truth table explain full subtractor. Write the output Boolean (06 Marks) expressions. (04 Marks)

Differentiate combinational and sequential circuits.

Module-2

(08 Marks) Write note on purity bit generator. 3 a.

Describe the operation of ripple carry adder with block diagram and logic diagram. (08 Marks) b.

Write a note on 4-bit carry look ahead adder. a.

(06 Marks)

Explain the operation of 3-bit Rotators using multiplexer. b.

(05 Marks)

Write note on Barel shifter using 2:1 multiplexer.

(05 Marks)

Module-3

Explain the working of D-latch using NOR gate with truth table and logic diagram. 5

(08 Marks)

Define shift register. Discuss about Parallel In Parallel Out (PIPO) shift register with (08 Marks) diagram.

OR

Explain the working of Asynchronous counter.

(08 Marks)

Explain T-latch with circuit diagram and Truth table.

(08 Marks)

Module-4

Explain realization of CMOS OR gate and AND gate.

(08 Marks) (06 Marks)

Explain the power dissipation equation for CMOS.

(02 Marks)

Explain noise margin in CMOS.

OR

Explain realization of CMOS XOR and XNOR gate. 8

(08 Marks)

Discuss CMOS transmission gates and multiplexer. b.

(08 Marks)

Module-5

Write a verilog HDL code for SR and D flip flop. 9 a.

(10 Marks)

How to write a verilog code for up/down counters? b.

(06 Marks)

Write a note on Programmable Logic Array (PLA) and Field Programmable Gate Array 10 a. (12 Marks) (FPGA).

Explain the method of writing a verilog code for latch.

(04 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.